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CONVERGENCEACCELERATIONAND SHOCK FITTING i:i

FOR TRANSONIC AERODYNAMICS COMPUTATIONS !

i Moha,aed M. Hafez and H. K. Cheng L1
_ Department of Aerospace Engineering
_ University of Southern California
_: Los Angeles, California 30007

_. ABSTRACI take as an example the finite-dilference solution to

Dirichlet's problem in a unit domain. The
square

, Two problems in computational fluid dynamics are speed and storage capacity of the modern computers
studied in the context of transonic small-disturb- are simply not high enough for solving this problem
ance theory: I. How to speed up the convergence for to an acceptable accuracy directly by Cramer's rgle_
currently available iterative procedures, II. liow nor efficiently by the Gauss elimination method.( 1,2]
a shock-fitting method may be adapted to existing Established relaxation methods, such as iterative
relaxation procedures with minimal alterations in procedures of Jacobi (d), Gauss-Seidel (GS), Succes-
computer programming and storage requirements. The sive Over-Relaxation (SDR), Line Successive Over-
paper contributes to a clarification of error anal- Relaxation(lineSOR) Symmetric Successive Over-Relax-
yses for sequence transformations based on the pow- a_ion (SSOR), etc., prove to remain as the reliable :!
er method (including also the nonlinear transforms way to solve this and other elliptic problems, using :_
of Aitken, Shanks and Wilkinson), and to develeoing modern computers. (2,3,4) The convergence rate of

a cyclic iterative procedure applying the transform- any of these iterative procedures will depend on the
ations. Examples testing the procedure for a model magnitude of the eigen value of the largest modulus _
Dirichlet problem and for a transonic airfoil prob- of the iterative matrix, called sp_ctra] radius,
lem show that savings in computer time by a factor deffoted here by I ,I. The error of the solution
of three to five is generally possible, depending on at the k th iterations is, in most cases, gauged by

accuracy requirements and the particular iterative (2-5) ]_.ilk ,

Ii procedure used. A shock-fitting method, valid !!whether the shock is nearly normal or oblique, is The need for improvement is apparent from the fact,
developed; it_ relation to, and differences from, to be amplified in _2.3 below, that l.h_lltends to
Murman's shock-point operator (SP0) method are de- unity as the mesh size vanishes. Thus, for an ac-

curate solution, the convergence is painfully slow.
lineated. Improvement over shock-capturing and SPO

(Forcertain well-ordered sparse matrices with con-methods through shock fitting are demonstrated oy
solutions to an airfoil problem using same mesh stant coefficients, the use of direct method can be
sizes, quite efficient; see Refs. 6 and 7, also 10).

_ I. INTRODUCTION The relative merits for adopting different relax-
ation procedures may be assessed on the basis of

Many current methods of fluid dynamics computa- I -]_l[ • Lomax and Steger(B) recently discussed
i tions make use oC relaxation procedures. There are possible improvement of convergence characteristics

two aspects of the computation which considerably from this viewpoint, which will depend, of course,

i limit the usefulness and potentiality of these on certain a priori knowledge of the iterative
pro-

grams: One is the low rate of convergence with matrix or the spectral radius. The approach from

respect to iterations, hence costly computer time; this viewpoint will not be fully explored here, al-the other is ti_e loss of the sharp definition of a though the following study does bring out certain

shock surface in finite-difference solutions where important effects of the procedure changes on con-shocks are "captured." This paper will present vergence rate. Instead of altering the basic relax-
_ studies on these two aspects mainly in the context ation procedure (For each iteration), we will adopt

i of a cyclic iterative procedure; (weakly nonlinear) se-the (inv_sc_d)transonic small-disturbance theory.
Our study will focus on: I. How to speed up conver- quence transformations closely related to those of
gence for currently available iterative procedures, Shanks and Aitken are applied at the conclusion of

and II. How a shock-fitting method may be adapted each cycle, generating initial data (closer to the t
to existing relaxation programs --- with minimal convergence limit) for the next cycle.

alterations in computer programming and storage i

requirements._ The theoretical basis of our transformations lies

in the stipulated properties of the flrst few domi-

It is quiLe apparent that similar treatments, the nant eigenvalues of the iterative matrix, similar
acceleration techniques in particular, can be adopt- to that of the power method;(9,3,4) but special

I ed to speed up convergence of iter_tlve solutions allowance is made that moduli of successive eigen

to large algebraic systems arising from other prob- values can be very close to each other and to unity.
lem formulations (the discretized solutions to This allowance, we believe, has removed the most
integral-differential equations, and the problem via (unrealise:c) serious limitation of the classical
finlte-element methods, as well as to certain False- theory of the power method as applied tciterative

!: time unsteady problems); this will be explored in difference solu_' ,ns. The error estimates, hencethe convergence _s, are established for both
! separate works, first-order and , net-order transforms. The study

Need of Acceleration also clariiies an erroneous notion about the accura-
cy of Aitken's _a. process applied to eigen-value

. To see the need of acceleratlon techniques, we may problems (see _ 2.2).

! _Thus , the first question addresses to accelerating convergence with respect to iterations, whereas the
second, in effect, is related t_ convergence with respect to ti_e mesh sizes, since shock fitting p_rmits
the use of a coarser grid.
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One efficient way to reduce terations _'or the owing largely to the numerical viscosity introduced
relaxation problems of interest is "grid halving"-- by the difference schemes, but is smeared out overa
starting with coarse grids, the grids arc refined few grid points. In fact, the solutions by the line
at subsequent stages of iterations. The tech- SOR .1_ethod do not satisfy the shock conservation
niquesj powerfully demonstrated by Jameson and South, laws in some ca_es, and do not agree with the re-

(l 1,12)should be particularly helpful during the _lrtm- _[_in_dr", V_ea"tthhee_eraedpy a ca_P_oOa_e(2eTr,r2ob)fromdevelopment (debugging) stage of such programs, a a n
The common problem of slow convergence eventually Lhe shock capturing; he discovers a relatively sire-
appears, however, as qrids are refined. As is well ,_le technique to implement the original line SOR
known,(2) the relative merit and linlitations of the method, employing a shock-point operator. However,
grid-halving are a consequence of the effects ofthe the SPO solution still takes four or more gridpoints
grid size on the spectral radius, hence, the conver- to complete a shock jump, and the accuracy of the
9ence rate, and can be studied as such (cf.§_ 2.3 method has been demonstrated only for o.,e case which
and 5). To achieve maximum economy, the technique employed an exceedingly fine grid. It i_ pertinent,
can be used in combination with other methods, al- therefore, to examine if the alternative, namely,
though, for some problems related to perturbation shock fitting, may succeed with a coarser grid. To
analyses (e.g., Ref. 13, p. 16), application of the best of our knowledge, works on relaxation meth-
grid-halving may not be straightforward, od with shock fitting do not exist in the literature.

We will demonstrate that for the same mesh sizes,
Slow Convergence in Transonic Flow Computations shock fitting does represent an improvement over the

line SOR (with and witheut the SPO) in describing an
One of the great recent advanceS in aerodynamics embedded shock. Some small but noticeable differen-

related to relaxation methods is, perhaps, Murman ces from Murman's SPO solution (29) remain, however,
and Cole's calculation of plane transonic flow based to be resolved. (cf.§8.3).
on small-disturbance theory using type-dependent

difference schemes, which succeeds in capturing the The first part of this paper,_2-5, will discuss
shock in a super-critical flow.(15) Subsequent the acceleration technique and related algorithms,
_orks extend the analysis to lifting airfoils, axis- with applications to the model elliptic and
ymmetric bodies, a_,d three-dimensional wings, and transonic equations. The second part,§§6-8, pre-
to the full compressible potential equations (Refs. sents our study of shock fitting for relaxation soi-
16-19 ; See reviews Refs. 20 and 21, also 22). The utions to transonic flow. Ti_e kinship of our accel-
computer storage and the number of arithmetical op- eration techniquewith the Shank!_ nonlinear trans-
erations required by programs based on these methods formation (30) and Aitker,'_ _z . orocess is nete-
are low enough to make the computations possible worthy, but their subtle differences are essentla];
even for a modest institution. However, the comput- these will be clarified in _ 2. The basis of the
er time of 400-1,0OO iterations required for the power method is introduced in § 2.2. To amplify the
more complicated problems may still demand ½ to 2 importance for allowing close spacings between suc-
hours on an IBM 360/44 or 370/!58, and lO-4Omin, on cessive eigenvalue moduli and its consequences, we
a CDC-6600. Use of acceleration techniques with summarize in _ 2.3 certain results of Young(2) for a
savings of computer time by a factor of three or Dirichlet problem. The main theoretical content of
four is certainly worthwhile, especially if one has our method is presented in § 3 where the errors in
a great many problems to solve. We point out in the power method are analyzed, and the sequence
this connection that, unlike those of DiFjchlet and transforms serving base to our cyclic iterative
other wc]l-_ondltioned model problems (2,3), the method are derived. Numerical experiments with the
i terative matrix of the quasi linear, mixed-flow cycli:acceleration and other _ethods are testtd for

problem does not lend itself to an a priori deter- the model Dirichlet problem in § 4 and app:ied to
mination of its eigenvalues. The proper choice of the transonic flow problem in § 5. Section 6 des-
the relaxation parameter "oo" for the SOR method cribes our shock-fitting procedure, and § 7 discus-
in this case has been mostly guess work, where room ses relations to Murman's SPO method. Computation
for improvement is ample. In this respect, we note results are studied in _J8.
also that the established approach based on an opti-
mum _ will not necessarily lead to the fastest PART I
approach to the convergence limit for the SOR pro- 2. SEQUENCE TRANSFORMS AND POWER METHOD
cedure --- even for a Dirichlet problem, as subse-

quent examinations will show (§4). 2.1 Transformation of Sequence

Shock Fittin 9 for Relaxation Solutions Use of transformations to improve convergence
characteristics of sequences is not unfamiliar inthe

Finite-difference solutions to inviscid compres- literature of fluid mechanics and applied mathemat-
sible flow, with a discontinuous shock surface ics.(34"37) One class of these which bears a kin-
satisfying the Ranklne-llugonlot relaLions, have ship to the key equations of our method is the non-
been carried out :n the past mostly as one to an linear transformations of Daniel Shanks t30_ and the.

_o_i:tttohsioc;iiii'a!i:am!nii!!iii!'r_i_ii_6;:_: say,re'atedthetransfor'maLion_' 'Pad_' rationalgives,k.,fracLions.(3_)a,newl_)ksequence,_k,,FnamasequenCe,c,oser..... to

Like Lh(___t.im_rdependent method of Yoshihara and the limit _b . The simplest among these is the
Magnus, _l,z_) solutions representing the steady el transform of Shanks
limit are physically sound and can be made reasonably
accurate but are quite eos_ly to perform. In the _)k. (i_+ _% I (2.1)

_.'=
line relaxation method of Murman and Cole, the shock k,, _,.,-_._)k kalis captured as a part of the continuous solution --

'"Since the central-difference scheme for the subcritical region does not give precisely the same viscous
coefflclent,computed shock structure, if obtalnable_ wil! be qualitatively different from that in a
Navaer-Stekes solution.

2
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which predicts the limit _:) from three successive n n

iterates _k-, , _A , and _,+, . Equation (2) ¢ = _--_.C,'_,k/_'_.C,. (2.3}
has been found and applied independently in many K=o ;=o
earlier works and the algorithm is often referred to
as Aitkenas _2-process (see Refs. 4, 5, 30-32), whe,'e C; is simply the co-factor of _k+L in the
which could also be viewed as a derivative-free var- determinant

iant of Newtonls method or the method of false posi - _k l ! !inl

i tion (see for example, Ref. 5, p_. 96-IO9). _': _+, q, _z (2.3a)

As a predictor of the limit _ for an iterative ' '
i solution to a nonlinear scalar equation _j,,=_(_), _k,n _ q_ ,

i Eq. (2.1) is subject to an error comparable to the Since CK's are independent of k , it can be
square of Ekt_k-_ under a nonvanishing 9'(_), eliminated by applying Eq. (2.3) n times with A
and is, in fact, exact if the equation is linear, replaced by k-! , k- 2 , ..., k-n . This leads

i However, for the iterative matrix equations of in- to precisely the en transform of {_k }
terest (see below), these estimates are not strictly

correct even in the linear case. The validity (and 2.2 Linearized System and Power Hethod
i accuracy) of Eq. (2.1) and similar transforms must

: be established on an entirely different basis. In the _elaxation solution to the difference
i Formally, the first-order transform in the present equations of interest, the unknown _ and i=s k th
i method, Eq. (3.6) below, could be regarded as a iterates (_k are vectors with components as many
: varient from that of Aitken and Shanks, Eq. (2.1);
i however, a point-by-point application of Eq. (2.1) as the number of total grid points N . The itera-tive matrix equation of interest is

to the iterative solution of a matrix equation

proves to be unreliable and uneconomical. (See _3 (J_,l = _(_A) (2.4)

i and 5 below; neither Aitken nor Wilkinson have _und where the function _ depends on the difference
their transforms very successful wi_.matrix solutions.) equations and the iterative procedure used. In
We note in passing that Wilkinson, _) following approaching the convergence limit, the error vector
Aitken,( TM, applied Eq. (2.1) to approximate the
lowest-order eigenvector of a matrix, and claimed _k = _)_-_ (2.5)

anlle_ll z accuracy; but the proof (which overlooks satisfies a linearized matrix equation
the contribution from the third eigenvectors, Ref. (2.6)
4, p. 578) is itself in error. _k*_ : (_ _k

where C_ is the Jacobian matrix of _ , with a

Considering the sequence { (_)k} as the k-term remainder comparable to the square of (some norm of)
partial sum of a series of an analytic function, _k , assuming that _ is well-behaved and inde-

' Shanks identifies one of his transformed sequence pendent of _ It may suffice, therefore, to

{_,(_,)J ,. to which [_)} of Eq. (2.1) belongs, analyze the error vector on the basis of this linear
with the nt_.row in the upper triangle of the Pad_ recursion relation, with a second-order accuracy.
Table. (30,3_) (For PadS' fractions and further The equations governing the limit solution (_ may,
relations to Shanks* transforms, see Ref5. 39, 40, however, be nonlinear.
and 41.) An important observation motivating the
work of Shanks is that the transformed sequence We note in passing that Eq. (2.6) is equivalent

_,(_) } represents (exactly) the limit _) of to a discrete version of a time-dependent system,
a sequence {_k} , if _D_ has (precisely) the say,
transient behavior for successive k C' _= A cp (2.7a)

(_ -- _ �_"[0_q k (2.2) For arbitrary matrices C and A , and time step_ so long as

"=' Q = exp. {=t C"A }. (2.7b)
where _ and _=' are constants. It is apparent
that convergence requires I _'1 < | and that, for a Conversely, solutions to a discretized time-depend-
sequence from the partial sum of a geometric series ent problem may be considered near the equilibrium
( O..= O, ='_t), the _/ transform of Shanks yields limit as the iteratlve solution to a linear system,
the exact limit._ The stipulated exponential transl- Eq. (2.7). Thus, Varga(3) discusses extensively
ent, Eq. (2.2), is not a general one, for there is iterative difference methods for elliptic equations,
no apparent reason that the iterates of a general along with forward, backward and Crank-Nicholson
scalar equation cannot approach its limit algebrai- schemes for parabolic equations, and interprets the
catlv instead. Interestingly, for the iterative latter as Pad_ Approxlmants of the exponential ma-
solution to a matrix equation, a transient similar trix, Eq. (2.7b). (Also see Lomax and Steger's re-

to Eq. (2.2) does apply to each co._ of the view, Ref. 8.) Here lics the potentiality of the
solution near th-"--'econver9ence limit [ct._2 and 3)_ techniques undPr study for speeding up computations
a point not fully amplified (recognized) by Shanks. of steady flows .Jsin9 a pseudo-unstuady approach.
In this respect, the present and Shanks' works could

be considered to have come from the same vein. Returning to the linear iterative system, Eq.
(2.6), the matrix Q has generally a set of eigen-

• It is instructive to explore the consequence of values ,A.i with corr_spondlng eigen voctor 1,r_

the transient assumed in Eq. (2.2). The equation is Q IIJ'¢ =_1)'_. _ _' : t, 2, _. _,... (2.8)applied to k+ I , k 0..., k_ n in addition
to k , the resulting system can be used to express We assume for the moment that the _k._ *s are dis-
the limit _ _ as well as the _ values wf G,'_._ tinct and can be ordered according to their modull

*ntermsof _, , _,., ..... _,.. and _, 's, as iX,l>l_,l >1_,1> >l%.)>lX_l. The error

Aitken also studied successive transformations of new sequences, i.e., £t _ , cf. Refs. 31 & 32.Refar to Addendum A.I, p. 16.
3
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!
vector of the initial data may then be represented and, for the GS method, are ._I
by m

Eo: ¢o-_, =_,_, _, (2.9) x,=_,,~ f-_'h', _,=_,,~ ,-{_'h'. (2.,5b) :
i'm#

Repeated iterations on Eq. (2.9) kvith Eq. (2.6) If IA,Ik=e kl"l*'l is taken as an estimate of _
yields the error vector at the k th iteration !norm II EI_ II , the GS method would then take

__-$-$:_'_O(iIf( _,.I_,,_ -- (2.10) ' /fttAl'or N/tl "t iterations to reduce II El(ll bya factor of _-I ; the corresponding iterations for ii

This is the main b_e for the power method of Fadeev the J method is ZN/fr I. If the Shanks-Aitken
and Fadeeva (9,I,3,4) Obviously, convergence requires transform can be used, the error norm becomes i
I_,]4 I and, near the limit, the error vector is l_kalk=_l'l"IA= I , according to Eq. (2.12); cam-
dominated by the lowest eigenvector I_, as paring _kz with _., and )_awith _U# in Eq. (2.15), the i

(2.11) convergence rate is seen to increase two and a half
0(o£ _,k,_3.+ times in either case. The line-relaxal, ion version

of the GS or J method has values of (" I -._) o _
Omitting the remainder proportional to ,)_.il_ , ('l-v=pt_) twice of those in Eq. (2.14b), 'hence

Eq. (2.11) can be applied to three s,,ccessive iter- will conw:rge twice faster, for .kp_ near unity.(2,3)
ates and recovers readily the Aitken-Shanks trans-
form, Eq. (2.1). This should not be surprising, Over-relaxation applies to J and GS methods or
because, for n ( N , and writing _+. as 3ki , their line relaxation versions, using _)k_l =
the 'll:ransient" of Shanks, Eq. (2.2), for which the (_ + ua ( ¢)_,# - _ ) , increase the convergence

em transform gives the exact limit, is identifi- rate in the model Dirichlet problem, provided
able with the first _ terms of the error vector ! < ¢'J _, _. For this and other more general matrix
in Eq. (2.10). In other words, the en transform equations, Young shows that an optimum o_ exists
applied to matrix solutions finds a theoretical ba- between I and 2 for the SOR method, for which the
sis in the power method, with an error expected to spectral radius reaches its smallest value with (cf.
bc proportional to I_ Ref. 2, p. 172, 173)

("/_'n_'l_'" << | (2.12) 1 -- J]_-,l -" O(;,rh.).
(2.15)

This wou]d lead to an order of magnitude saving in

Although the approach to the limit is exponential iterations; but _ts possibility wil] not be st;p-
in k , according to Eq. (2.10), IA I , .A.II , etc., ulated here, because the optimum _ cannot be in-
are very c ose to unity in most prob]ems of nterest, ferred for the nonlinear problem (for _ ) of in-
This makes the convergence extremely slow; it also terest, and also because the neighborhood of the op-
makes the error estimates for the e_ transform, timum o_I for which Eq. (2.15) holds is very narrow.
Eqs, (2.11) and (2.12), unreliable (see § 3 below)
To illustrate this behavior of Ai's and their de- Young also observes that for 0_¢_ <_f., the
pendence on the mesh size, we shall examine belo'v a spectral radius decreases monotonically with in-
model elliptic problem, creasing ¢_a toward Ojopf.. (where there is a square-

root singularity), and that spectral radius increases

2.3 Ei_len Va]ues of Iterative Matrix: Model Problem linearly as (¢_-f) for ¢_a_f._. u_ _ Z Except
when _ is very close to 2, say _ = Z- O(hm}_

Consider the finite-difference relaxation solution these observations and Eq. (2.15) indicate that the
to the Laplace equation in a rectangular domain with problem of slow convergence is more serious with
_:I prescribed on the boundary (a two-dimensional the range 0 < _ • _opr.,

Olrichlet problem). Using a uniform mesh size, the
length of two sides of the rectangle a_ _aken robe An important feature of the S0R solution to the

and 3 units, respectively, with ]:_ J" . The model Dirichlet problem is that, for _a,l_$f_ _ _.
I:iterative matrix equation of N=(I-I).(_f-I) un- all elgenvalues have the same modulus, i.e.,IA,

knowns resulting from the central-difference scheme I-'-_"l= ... =I_kNl (Cf. Ref. 2, pp. 203-206.) This
using standard iterative techniques_can be written shows c early that the applicability of acceleration
as techniques based on the power method, Eqs. (2.10) -

_)ll+l _- Q_k -I- _ (2.13) (2.12), is limited only to
< ¢+Jo_f. (2. 16)consistent with Eq. (2.6). The s+t of eigenvalues

of (_ is a two-parameter family depending on the for which the first few eigenvalues are as close
iterative procedure used. Following Young(2), the to unity as
elgen value is denoted by /ap_ for the Jacob; (J) I- ,A. i = O(hl). (2.17)

method, and by _A._ for the Gauss-Seidel (GS) As noted before, for faaapf w_¢_< _ the need for
method. It can be shown that (Ref. 2, pp. 71-73, acceleration may not be as critical.
131)

'[(7)+,;°"_=1 _L_IIrI"" ,,-- _" (2.14a) 3. ERRORS IN THE POWERMETIllOD
AND NON'C&NEARTRANSFORMATIONS

with p = I, 2..... I- I , and _ = I, 2.....
3"- I . For large t and 3", the First few For large-sca;e computations involving very fine
(dominant) eigen values are grids (h _4 _), the accuracy and convergence rate

-- | ._.,[(, &] of the Shanks ,. tran._form summarlzed in § 2.2_+--P_ + l- @/Z) l �(q/l)(2.14b) cannot be regarded as well-based. Thls Is because the
very fact that

In terms of the mesh size $.x=_ly=h , the two _,_ ]=O(h=)_O, _4..._.=O(ht), (3.1)largest elgen values for the J method are

M,"_.'_/-_Pr:h l, p=:_l,_#- _tt'/l_ (2.15a) where £ = 2, 3 ..... M <_.N , brought out in§2.3 for the model elliptic problem, has not been
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allowed for in classical wo,'ks. (1'3-5'9) This unac- Shanks transform, Fq. (2.1), except at the reference
counted fact could change the error estimate for point where .)t I is computed. (We will point out
the transforms ('cf. Eq. (3.3) below). In the fol- the relative merit of Eq. (3.6) over the _z pro-
Iowingp we shall establish the transforms from d ceSS in §4.) Equations (3 6) confirm the validity
firmer basis, taking into account Eq. (3.1), inctud- of the Aitken-Shanks or the el transform under con-
ing the case with repeated -_i's . dition Eq. (3.1) which is more relevant to the pre- 'i

sent study. The classical derivation of Eq. (3.6)
by LyusL_rnik (42) and by oLhcr_ appeared to be

3.1 First-0rder Transform fortuitous, since if the factor('A_--_,) were omit-

Wc shall first consider cases without repeated ted from the estimate of _.;k_ , the error in
would have to be amplified by an order ('/-_k,)'_= O(h'z) 'root for the eigenvalues. For the special case

with a single dominant eigenvalue, i.e., I_.,I> 3.2 Second- and Higher-Order Transforms
bkal_)l_,l etc., the formal basis for the _z. pro-

cess der;ved from the power method is usually taken
! as GI+__,, _k • The error of this equation Since complex eigenvalues of a real matrix occur

may be studied from the (exact) relation based on in pairs, one m.ust allow for cases in which two or
more eigenvalues are equally dominant, e.g., l_,,l =

Eq. (2.10) _v _._ (3.2) IA_I , even if they are distinct. The need also
#Jk+,-)k,% : _'-_,O_.I]_.. ()k_-_) . arise if I_._I is too close to I_,I for the first-

c'=z order transform to be useful.
From this, one may formally predict the limit _)
from two iterates and _._ We shall look for a transform to replace Eq.(3.6),

NO_ .k(A._) (3.3) making use of thefirSterror, a_cume_l" eigenvectors tofilter_.L,sare+ - _;'__._.)I. 0 , out the We that all dis-
l-Jk_ i=_. tinct, although some of their moduli may be equal,

where the last term gives a remainder at most of for which the Fadeev and Fadeeva result, Eq. (2.10),

the order .A._ , under Eq. (3.1). The need for a still holds. For this purpose, we shall introduce
critical analysis is seen from the appearance of a polynomial in ,_. of degree "n _-N , taking pn =I,n

(I-A,)as the denominator. Larger errors may thus p,(/_,)= T-F(_&-,A.j):p_ep, A+... + p,.A.n (3.7)
arise, depending on the method for estimating _,_ . #=_

where the second equality defines pj's as functicns
The simplest way of inferring 2_.I is to deter, of ,2_j 's. The roots of Pn(A)=O consist of the

mine it from three successive iterates via Eq. (3.2) whole set of eigenvalues. With this and Eq. (3.7),
for a chosen Treference) component of _k 's, say the Fadeev and Fadeeva result leads to equation re-

_; , at sufficiently large k miniscent of the Cayley Hamilton theoremC43):
(3.8a)

.}_,-- A,a+a_, (3.4a) p,e, ,,p,e,,, �p,_,.z+.. _ p,.(,,,,= a_,p
with with the remainder

" ,Z_._'_," (_.-,&)('_li'l) On the basis of Eq. (3.8), we may formally predict,-z the limit _) fro:n n successive iterates of the
same component as

. + ,XP'oo, + I3. a)
By virtue of the extra factor (_.z-_l.,)=O(h_), _._ _)-_,pj.
as an estimate for ,,_ should be reasonably accu- with N j=o

rate. An equivalent estimate, which will have less _;_:_z_OL_Ij. A._ pn(._F,)/p.._(l)
problems than _ with rounding error and with the ,'=n_l n (3.9b)

sensitivity to tl_e component chosen for reference, _ - _ 1_ ._k "l_()_+,-_j'_

_s (3.5) provided all the pj 's, i.e., _kj" 's, are known.
where _ signifies the summation over all coml_onents. As in _ 3.1, we may apply Eq. (3.9a) to a single
Other implimentations on the .)kl estimates are dis- (reference) component, without the remainder but
cussed in §3.4 later, with k replaced by iii- f , k- 2. ..... k- n .

The resultant equations, together with Eq. (3.9a)
With "_1 from Eq. (3.4), the limit (_ may now applied to the same component, give a linear system

be predicted as for estimating p 's, hence _,i 's. In terms of
I _j. are w_ry

the _eS_ _ma_s

accurate, because the relative error is comparable
I - ,A,_ to

with NIC. -- _,,, _t.i,f_n,!_ k P.('I) /'_r_.l?A.,_']

_._"'-_, _-_, _,.',-_; (3.6b) ('_

t. (_il/.i.)_.i ] =O('_Z._._) Now, with this high accuracy in o_i_ast, the orderof the errors in Eq. (3.9a) due t t from Pi's

where Eq. (3.1) has been used. Similar estimate of can be shown to be the same as 6k_ (_ under Eq. (3.1)
,*l_b can be c'btained if ,A,_ in Eq. (3.6) is

replaced by _'! . The transform based on Eq. (3.6 The c()nvergence limit predicted on the basis _)I
a), with _k,_ defined by Eq. (3.4a) or its equival- Eq. (3.9a), with pj's estimated in the abow> man-ner or by equivalent methods (of _ 3.4) will beonce, will be referred to as the first-order trans-- " '
form. It cannot be identified wit--l_--_e A"AT_¢n- referred t_) as the "nth-ordcr translorm.'* Its error,

accordin(J to Eq. (3.9b) i_ s,,en under condition Eq.

5
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where the remainders in _ and _ are the sameasln
(3.1) to r_main at i_,,Ik, Eqs. (3.6b) and (3.4b) with _1 a_d _j replaced

by _m and Aj _ , except the A: in _jk . in._
the same as would be anticipated from the classical terestingly, the first-order tra_sform with an eventheory (of. Eq. (2.12)). There is, of course, an

m is applicable to the case with _t =" Xz
additional error of the order I_ll z _l] zk , if (even though I_.,I = I_LI ), the error of ti;e I ,.the original Eq. (2.4) is nonlinear. At the refer-
ence point, the nth-order transform is identifiable form belongs, in this case, to the order ._._
with the_, transform of Shanks, if the method of Similarly, the nth-order transfurm may also be , .
estimating pj's indicated is strictly followed, plied to iterates separated by m . Generally,

order of the error in _ remains at -_._a und
condition Eq. (3.1), independently of m.

Since the pj's or _j's are constants of the
limit, and need not be evaluated for each component A key to the successful application of the first-
in the hJanner as for the _z -process(33,4) or Gz- order transform is the provision of an accurate and
algorlthm(45,46) j our nth order transform may be reliable estimate for the ei 9envaiue _, . One

advantage of using Eq. (3.16) with m 2 f , is, in
considered as being only weakly nonlinear. Eq. fact the reduction in the sensitivity of the first-(3.9a) specialized to _ = 2 was obtained by Wil-

order transform, Eq. (3.6), with respect to the er-kinson in Ref. 4 where its error was not analyzed.
for in estimating 2_, We observe in this regard
that not only will any error in _; be ampllfied by

3.3 The Case with Repeated Roots the factor (/._ I _2 = O(h-_) in the transform, but
the computed value of _ varies considerably from

If two or more eigenvalues coincide, Eq. (2.10) of component to component during the transient. In ad-
the power method may not be applicable because of the dition, there is a serious problem with rounding
lack of a complete set of independent eigenvectors, error in the computation of _ , since, near the
Suppose that the mth root of det. Q repeats it,ll r convergence limit, both the numerator and denomina-
times and that Q is not diagonalizable._ We may in- tar of .A_ may not remailtlarqe compared with round_gerrors in certain computers (IBM 360/44, 370/158,
traduce r new vectors _ , I_.I, .... _,_ , with etc.) using single-precision arithmetic In this

(_-_m Z)_tr_= O, ] (3.11) regard, the alternative of estimating _, by _1
_'=(_-A_Z)_,! , m_j_m x���`Eq. (3.5), which possesses a larger numerator

and denominator and represents an average among the
The member of the vector set 1/', , t_'_ ,..., tr_ , N components, gives, therefore, a better conver-
including the new vectors, can be shown to be lin- gence behavior. Another method for estimating _,
early independent, which proves to provide even better results is to

compute _ as a quotient of two inner product
We may now represent the initial error vector by ===

+
i=1 i=I j:_+, where _ is an N-component vector _,_-_,.,.

This estimate for _ , whose accuracy is compar-
where the first sum _"." excludes those appearing in ably to _ and ._, , is not to be confused with
the second. Repeated iteration on _,_ :q_k the "Rayleigh quotient" _,_Q_ff_t_ which re-with _o gives

N _ ¤�x�quiresO(N =)multiplicatlons as compared to O(N)

_k=_-_,_,.1_(__ + _:_a.(Qk _Z)_. (3.13) for _, (see, for example, Ref. 5).
l*_l j=M+I

where the m_trix Q car_be eliminated from Eq. (3.13) Similar comments apply to the problems of esti-
by making use of Eq. (3.11). For the case with a mating pj's or _'s for the higher-order trans-
double root ( r = I), we have form. Estimates of po and /:), for the second-

order transform similar to _, can be obtained, for

_k-, (3.14) example, from P_#_ + P_**_ = O
_k = _,'_'_ + _(m*, k m l/'m and similar equations.

as a basis for studying the e?{ect on the nth-Order

transform. If m> _ , the o,_er of the remainder 3.5 C_clic Acceleration Method f_
_k_ would change only a little, changing from

ex, .t_ _nl_n_,l _ tO exp.tkZnk_l_,,l_ If one of tl " The first and higher _rder transforms, Eqs.,
dominant eigenvalues is repeated, i.e., if m_ n (3.6a) and (3.3) can be used to improve the accuracy
_Eq. (3.8) remains unchanged because of the relaxation solution at the conc!usion of a

P_(._.m) = O. (3.15) large number of iterations, as in Lyusternik's

Therefore, the nth order transform holds for a re- work,(42, 4) or to convert _)i} to a new sequence
peated root. The proof may be extended to r _2 . closer to the limit.

3._ Implementations In the present work, these transforms are used
as a part of an iterative algorithm: the procedure

Instead of applying the first-order transform to consists of several cycles, each of which makes k'
three successive Iterates, one may apply it to (10 to 30) iterations on the (nonlinear) algebraic

_.., _ , and _lt_" In this case, Eq. (3.6) is system; the transformation is applied at the end of
replaced by each cycle to yield an estimate of the limit, which

is used as initial data for the next cycle. The

II_= (_k �411)_+m-_ (3.16a) error (norm)is reduced by a factor of _._ at

with _ " "h'_ the end of each iterative cycle (which is carriedinto the coefficient _ in the next approximation_

(_,)=(_,, __:)/(_:. ' O" es , (The convergence(,)1._)= "' ' _,..) (3.16b) the error after cycl is 0(_:.,), where kIs the total Iterations O"

"=fir _ Is dlagona_zeble, Eq. (2.9), and hence Eqs. (2.10) and (3.6a), hold ecen for repeated roots.f_Recently, Young_ ) and Della Torre and Klnsner(58) considered acceleration methods in which the acceler-
ation par=nater I/(I-x,_ln Eq. (3.6a)Is a constant(Independent of the iterative solution) chosen a priori.

6
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rate of the first-order transform s therefore un. the cr!tical dependence of the convergence rate on
affected by the subdivision into cycles.) Similar- the mesh size and exploits the advanr.age of coarse
ly, the cyclic application of the nth-order grids in two ways: (i) an adaptive discretization
transform over a total k iterations (_r times) will according to local need, and (ii) a multi-level it-
have an error norm of the order _k erative procedure in which coarser grids participate

n*l in solving equations on the finer grids. The pro-

Figure I illustrates the cyclic application of gramming work is intricate and complex. The cyclic
the first-order transform for a single component, procedure under study could, new,:rtheless, be applied
The application of the transform at the end of the to speed up such a program if the need arises.
cycle, say the k+ I iterate, requires the value
of _l_l (on the disc), and the stored value of
the same component from the previous iteration,_ k . 4. EXPERIMENT WITH OIRICHLET PROBLEM

If ,k, is to be determined as _ , Eq. (3.4b), As a model elliptic F.roblem, we consider relaxa-
only the value of the reference component J "_k-# is tion solutions to the Laplace equation with values
needed and carried as a _ datum (for the entire prescribed on a unit square boundary -- the Dirichlet
matrix). If ._-_ is chosen to be -'_l , Eq. (3.5), problem. For this particular problem, there are
one can compute _-15_I and store it as a single numerous solution methods which would require much
datum along with _ _ _._ is computed after the less computer time than tho;.e to be considered.
whole field of _b_,I has been obtained. The use But as a study of the cyclic iterative methods, this
of the _, , Eq. (3.17), requires storing the whole problem offe.'s an ideal testing ground. For this
field of _k along with that of _bi . When the purpose, it may suffice to consider the special
second-order transform is used (for predicting _ problem

after the k+n iteration), full storage for the ,_ _--,

two vectors _t_ and _tt_, are required; additional _--_ + _"Ta)_ = O (4.1)
storage for two vectors 6k and _ wilt be need-
ed f inner-product quotient forms for _o and _l in O< x <: ! , O < )' • | , with _ - | at y= I a_d
are used. The use of the latter quotient often _ = O elsewhere on the boundary. With uniform
yields smoother approach to _he limit and seems to grids, five-point central-difference schemes are
be worthwhile, used to reduce Eq. (4.1) tca system of algebraic

equations. Line successive over-relaxation (!ine
A 2-D transonic program similar to Murman and SOR) is used as a basic iterative procedure, with

Cole's (15) takes up typically I00 K for the symmet- the vertical ]ine (of constant X ) s.veep_ng from
tic airfoil problem using 2_00 grid points, and the left to the right in each iteration. To provide
typically 200 K. for the more general problem involv- a proper perspective in assessing the acceleration
in 9 lift using 5000 points. Each additional storage technique, examinations will be made _'n the influence

of the whole field of _k or _k amounts to adding of the relaxation parameter, reverse sweep,variable
I0 K.-- a relatively small addition indeed. Thus mesh size (grid halving), and other prncedure controls
the storage requirement for a general 2-D program of tt_e convergence characteristics. _/'
using the second-order transforms, even with the

more complicated estimates for po and _ will Effect of Relaxation Parameter
not exceed 250 K which is well within the 300-350 K

capacity of IBM 370/158class computers. In this For this study, the mesh size /% is taken to be 1/30.
regard, we point out that the iterative program for Four values of the relaxation parameter in the range
3-D potential transonic flows of Ref. 12 requires of 1< _a<2 are used, including _a = ].7037 which
typically 350 K (or less, an achieve_,_ent or A. Jameson; _ -_ : _ .i,eL_b"t_"_u_._ - Iin¢ SLOR method
See Refs. 4/ and 48); the f.easlhl,i* _ _ , ''g in this case (cf. § 2.3). The_. -_ence history
the cyclic dcce,..,a_,un method with the second- or of the iterative solutions at a typical paint X :
higher-order transform Lo this and similar programs 2/3, Y = I/3 are shown in Fig. 2. The results
using COO 6600 or larger con!puters re,aain to be confirm that the optimum ua gives the highest con-
studied, vergence rate. The solutions for _u = 1.6 and _=

We observe in passing that if Aitken's _Z I approach the limit monotonically and the
" case with u_ = 1.9>_op t exhibits oscillatory

process is strictly followed for every component, i. behavior, consistent with'properties noted in §2.3.
e., applying the _ transform to every grid point, The case with o_ = I has the slowest approach --

not only the storage and arithmetic operations are a one percent accuracy is attained only after 300
increased but the redundancy and nonunifor'mity in _ iterations. Also included are results of re,,erse
implicitly determined for different components may sweep applied to the case _=1.9, and an acceler-
delay the approach to the limit. It proves ation procedure in which Aitken's _1l _ proce_ is
to be less effectiw_ than the present procedure follo_.ed f_-'r each component (at each grid point).
(cf. _ L_ below) . (For application of the i_it The reverse swc._---_in the case is the !ine version of

acd similar acceleration algorithms in aerodynamics the SSOR; for a syr_netric iteratiw' matrix as in
computations, see Refs. 44 a and b.) the model problem under study, its application will

give real eigenvalue._ for the resultant matrlx.(3)
Among other acceleration techniques based on a The nonoscillatory approach for _ = 1.9 with the.

power method with comparable simplicity is one in reverse sweep shown confirm& this observation. The
wh;ch the eigen value is shifted by changing the _il-process applied cyclically to the case with
iteratlve matri Q to f_-p)"((2-pz ) , where ill (aJ = I does accelerate the convergence, achieving
is a constant.(_) This requires, however, a prior one percent accuracy after IOO iterations. But the
knowledge of the dominant eigen values, process is I,,ss effectiw, than tnat proposedo_ln_ to

t,hg r£_uD_tancy (and Inconsi!_tency_ in the .J_ estimate
An important recent work of A. Brandt (z+9) _)n fast _cr. _l._.b_.

numerical solutions for elliptic _'quations sl_,uldbe Rev_'rse and Horlzonta] Sweep_ f_r t_J_ t_J_p_
nlentioned in this connection. ]'he method, call_,d Unlike the case_)_op_, r_,v<.r_,,, swe_'p for
Multi-Level Adaptive Technique (MLAT), recogniz_,s t.la•_l_pt reduce_ the c(mverqt.ncu rat_. The re_dlt

Cf. Addendum A.2 for similar result5 for a nine- obtained for raJ= 1.6 (not _,hown_ c,mfirm- that. for1 accuracy_rew_r_e ,.weel_ wi|h vertical l;m. In-
point difference scheme. 7 c,'ca_es the |ternt|ons 5-I t*me_.
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If, instead, a horizontal line is used in the secoro order transform (the full and the dash-dot
sweeg, the reverse (up and down) sweeps curves_. The uniform mesh size h and the relaxa-
worsen the convergence rate but slightly. We n.te tion .,_rameter _ are the sdme as in Fig. 3(a).
i.1 this connection that the horizontal line version Thu ._,_.:Fficients Po and pj of the transform, Eq.• ju

of the SSOR for o_ = 1.6 converges even faster (3._o/, are estimated by a linear average method
than ;ine SOR at the optimum ¢_ (achieving one pew over the entire field analogous to ._1 • The full
cent accuracy at k =25, compareo with k = 45 for curve is generated by the cyclic method using the

the lin_ SOR at optimum u_ ). The gain through transform with rfl= 2 (§3.4), and the dash-dot
using the "horizontal" line in this case may be curve with m = I.
attributed to the fact that the non-zero boundary

value of _ is prescribed along the horizontal For the Dirichlet problem in a unit square using
line 7 = I in this particular problem. Substantial uniform mesh h , the line (group) version of the
reduction in iterations through use of horizontal J method has eigen v_l_es (Ref. 2, p. 453)
line has been found also in study with the transonic

small-disturbance flow problem where the main f_ow _ =C05_h_//EZ -coS(p_h_ (4.1)
and the airfoil are aligned horizontally. Hoheverj
the SOR and SSOR with horizontal lines do not appear _. I- _(pz,_t)_z+O(h4)_
to be very helpful in problems involving imbedded
supercritical flow, and will not be pursued in the with p , _ = I, 2, ..., (_-i_ I). The second
paper and the third dominant eigenvalues differ only in

O_h4), thus, are very close to each other. The
Test of Cyclic Acceleration Method: First Order line version of the SOR+_ethod, i.e., line SOR meth-

Transform od, will correspondingly have closely spaced .A.= and
.2_] (cf. Ref. 2, pp. 173-451). Therefore, the

As a test of the acceleration technique, we apply second-order =ransform, whose remainder is 0(_) ,
the proposed cyclic method to the Dirichlet problem cannot be expected to render a significant improve-
for the unit square, using a mesh size of _ = 1/32 ment in this case over the first-order transform
The convergence history for the accelerated solution whose remainder is O(.A._). Tha results obtalncu

at a typical point x =IOh , y = 22h , is here will be considered as an experiment withsecon_
compared with the accelerated Line SOR solution in order transfor_ to the line SOR to be more
Fig. 3(a) for a relaxation parameter _J = 1.4, and gainfully applied later. In spite of
in Fig. 3(b) for oI_ = I. The accelerated line the lack of a theoretical basis for its superiority
relaxation method (ALSOR) uses the cyclic procedure in the present application, the result based on _,e
based on the first-order transform with fl_ = Z , second-order transform with nl =2 turns out to
cf. Eqs. (3.6a) and (3.16b), _mplemented by the converge slightly faster than the corresponding
summation-quotient estimate x_.I for _B , :f. Eq. first-order result in Fig. 3(a).
(3.5). The iteration begins with _ =0 as initial
data for the field, the first cycle begins at k = Successive mesh refinement, or grid-halving,
I0, and the cycle is repeated every = 14. The effec- provides great saving in computer time, not only
tiveness of the acceleration technique in reducing because halvinE the mesh size would require tour
iterations (and computing ti.,e) is obvious from the tin_s the iLerations for the same accuracy (unless

results shown. In the case of ¢u =1 4, the accel- _J = C_opt.), but the calculation per cycle on each
erated solution needs only 45 iterations to converge new mesh (for a 2-0 problem) will be four times as
to 10-3 from the limit and 70 iterations for IO"4. expensive as the p;'evlous one. In studying the
These are to be compared with 150 and 250 itera- acceleration technique, it is therefore essential to
tior,s needed in an unaccelerated program with make appropriate comparison with the savings achie_
comparable accuracy (cf. Tabulation in Fig. 3(a)). able through grid-halving.
In the cas_ of (_) =1, for which tF -gence of
the line SOR solution is seen ear ue very The curve in short dash in figure 4 presents _h,
dew, thp improvement by the cyc" ative method convergence history for _ by the line SOR method
displayed in Fig. 3(b) is even n onounced, employing 9r;d-halving. The computation starts with

one interior grid point where (Po is set equal to
We note in passing that, in appropriate circum- zero. The iterative cycle corresponding to each mesh

s_nce, this acceleration technique applied to a size h_ is given h_ iterations before chang,ng
_ven (/J _ (w.#_ may be competitive or even to the finer grid (without waitin 9 for full conver-
better than m_re changing to the optimum O0 (with- gence), except for the cycle with the finest grill
out acceleration). This fact is supported by expeP h = (32) -I , for which the iteration number ;s ,.ot
iment (not shown) with acceleration of line SOR for restricted. Thts choicu of the iteration numbers
f.4_=1.6. We point out, in passing, that even appears to be much more efficient than what had been

though use of reverse sweeps may decrease the con- practiced in published works (cf. Ref. II, Table I).
vergence rate, acceleration of a line SSOR program For k • 30, where the grid-halving has not
via the first-order transform will be generally reached its final cycle, the curve _ vs. k for
successful. In fact, In our earlier study (Ref. 50, gr:d-halving (without acceleration) appears to be
Figs. I and 2), we find the cyclic application of somewhat closer to the lim!t than the East of ¢,r
the first-order transform greatly improved the con- accelerated line SOR sol,ltion (based on the secund-
vergence rate, even without constantly updating ,A.+ order transform without grid-halving). But t_e
with iterations, error in the grid-halving solution becomes larger

than the accelerated solutions _fter the former
T_st of Second-Order Transform. Comparison with passes into its final cycle wi_h the finest mesh,

Grid HalvlnQ. as is apparent from the graph and the tahle.

Figure 4 presents the convergence h!story of Thus the required iterat_oes for an accelerated
iteratlve solutions for the same grid point ( X = line SOR solutlon_e comparable to, or eve,, less
I0 _ , _ = 22 h ) _slng two variants of the than, an unaccelerated one with grid-halvlng. How-
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ever, depending on the error cllowed, there can be satisfying approximate jump conditions
considerable saving by 9rid_halving in the computer

time on account of the g,'eat reduction in the grid ± <-_¢,(,H)_',>,=_7_]]/_r_,_ z-d_ (5.4)
points, hence the computer work, for the coarser
grids. !f, on the other hahd, _he deviation from where IT -r] and< ) signify the jump and the ave-
the (estimated) convergencc Ih_it is not to exceed rage of quantities in question across the shock,
IO-_ (comparable _ the _ _On_ax set in Ref. Ill, respectively.
the total computer time for accelerated solut;on may Although it is not the best fur studying simili-
then be I(ss than that with grid halving. In any tude, Cole's form, Eqs. (5.1) - (5.3), will be adop-
case, th acceleration te.'aique can be expected to ted b_low for the convenience in making comparison
reduce the computer time for the last stage of the with works of Merman and others.(15,16,29) (To eli-
grid-halving with the demonstrated efficiency._ minate (1+1) from Eq.(5.1 a) one can simply replace

all M_ by (f_f)_ M_ in Eq. (5.1) - (5.3), except
5. ACCELERATING THE LINE S0R in (I- Ivy)of Eq. (5.2).)

SOLUTION: TRANSONIC FLOW In setting up the numerical procedure, the far-
field condition Eq. (5.1d) is replaced by one over

The partial differential equation 9o_,ernln 9 a rectangular boundary _= _ , _ _ _6 , with
steady transonic flow is nonlinear and belong s to _ satisfying the far-field behavior consistent
the mixed (elliptic-hyperbolic) type. Unlike the with Eqs. (5.1). For a symmetric airfoil, the _-axis
model Dirlchlet problem of _4 the matrix Q govern- can be used in place of the lower boundary _'=-6 .
inq the error vector is not a priori known; it In th, cases of a high subsonic free stream
is not easy to iden:ify, in this case, the opti- (i.e. Kc _ O ) to be analyzed below, the _ value

mum relaxation parameter for the efficient use of over the far boundary can be described by that based
the SORmethod. Application of cyclic acceleration on the linearized form of (5.1a) for a vortex and
technique to speed up the line SORmethod is_ there- doublet of unknown strengths, to be deter;ined in
for_, appropriate. The following will study its the 'course of the iteration. The vortex strength,

effectiveness in the context of the transonic i.e. the circulation, is directly related to the
small-disturbance theory, potential jump at the trailing edge; the doublet

strength depends on the airfoil thickness distribu-

5.] The Transonic Small-Disturbance E_uations: tion as well as the near-field nonlinear corrections,
Basic Line Relaxation Program and can be estimated from data on the boundary

with a least-square method at the end of each itera-
The steady inviscid plane flow past a thin air- tion. Unlike Krupp and Herman's procedure,(16) the

Full nea_ sonic speed can be described by a per- potential jump across the x-axis behind the trailing
turbation velocity potential_satisfylng a small edge is assumed uniform and kept at the value in the
disturbance equation, first derived by yon previous iteration until a new potential jump is
K&rm_n.(51) Let (x,y) be Cartesian coordinates generated at the trailing edge.
with the x-axis parallel to the free stream, and C_ The basic solution procedure, to which the acce-
be a reference length taken below to be the half leration and shock fitting methous will be applied,
chord. The upper and ]ower airfo!l surface will be follows that of Merman and Cole.(15)A centra]-dif-
represented as Y--_._.C_._ ( x/C_, _/_, _0)_ ference oper3tor with second-order accur3cy is used
where ¢ is the thickness ratio, and o_ the angle in the elliptic region, and an imp]icit backward
of attack. In most computationalwork_ K_rm_n's difference operator with a flrst-order accuracy is
equations and the boundary conditions have been used in the hyperbolic region. In this basic pro-
written in {he form, following Cole(52) gram, a parabolic point operator corresponding to

_ is use_ at a grid point between the ellip-

K¢- (_el) _ _= 0 i (5.is) tic and the hyperbolic regions. The difference equa-
tions are solved by a line relaxation method_assign-
in_ appropriate uJ'S to the two regions). The un-

@7(_,_o) = y'(_,_/=,to) I_I_ 11 (S. lb) known at points belonging to the same vertical lineare solved simultaneously, while the line sweeps
downstream.

_ r[_'_(_, to)_]] :o, ]_I > i (5.1c) in solving ,he line problem, the matrlx islinear-a_ ized by assigning valuesto the coefficient of P.D.
E. (5.1a) from _he previous sweep; the resulting1

i_ , ¢_ "-_'0 , _$ _*_---00. (5.1d) _ridiagonalinverted.matrix for the line can be re._dily

where 7_x/c., 7_(_W) X/C_ , _" _ The basic program used in the subsequent studios3(A_/¢_ _/UC_, is written for an IBff 370/153. The grid has 81

is the potential jump_and points in _ and 62 points in _ (or 31 points in
if the problem has symmetry in _ ), using

- --" v"=,,{l-tVl)}/flvll_¢/! (5.2_ unequal but gradually varying mesh size. The finestK¢=
meshes are assigned over I_l _ _ and _ = _ 0.02

At the trailing edge which is assumed to be sharp, where 4_=OO$ and _=O.O4 with the mesh sizes
the Kutta-Joukowski condition is to be enforced, increasing outward.
The pressure coefficient can be evaluated as The truncation error in the difference equation

system is generally of the order a_ and (a_)_ .
-_ _l_" There is, however, a re-expansion singularity re-

Cp_(P'Pm_/,'/_U _: -Z(_) _. (5._) suiting from a mismatch ofstreamllne and surface
The relative error in this small-disturbance formu- curvatures at the shock root where the surface pres-

lotion's comparable to Cp , i.e. to _V_. For a sure is known to vary like x'_ x' , withx'=_._,
supercritical f]ow, the elliptlc and hyperEollc uncovered byOswatltsch and Zierep(53) (also see
regions are separated by the sonic boundary Ref. 5q). This singularity causes a unit-order er-

I_¢- (_w)_ = O , and by the shock _'=_(_) ror in the difference equation for _" near the
Refer to A.2 in Addenda for a _tudy of the _econd.order transform appl{ed to a nlne-p¢,int central diffe"-

enc,_procedure. 9
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shock root, but the relat;ve errors in velocities pair of relaxation parameter: _ = 1.8 in the
belong to the order a_OgA_. (Hence, there is no elliptic region and ¢_J = 0.8 in the hyperbolic
gain in using a second-order difference scheme region. This combination turns out to give a much
near the shock, unless the re-expansion singularity better convergence behav;or. The line SOR solution i
is analytically accounted for.) With this in mind, (solid curve) approaches the limit within 10-2 at

our solution will be no more accurate than 40 iterations and within IO-3 at 80 iterations.
The accelerated line SOR using on the flrst-order

0_. = O C_a_d_ _= (thin solid line with print out marks_ reoulres, _7 ) (5.5) even less work: 18 iterations f,)r IO-_ and 45
iterations for 10-3 . (We note that this set of

with _ and a_ taken to be thesmailest_ and calculations used a shorter cycle than those in
a_. Test of convergence with respect to grid (a)and (c) of Fig. 5 with k' = E .) Th_ conver-

size indicates nevertheless that the 4_ dependence gence is so rapid in this case that use of the
may be considerably smaller than (a_10_a_') second-order transform is considered unnecessary.
at points removed from the singularity. Host transonic flow computations to date have

employed over relaxation in the eliiptic region
5.2 Examples: Circular Arc Airfoil and under relaxation in the hyperbolic region.

Figure 5 (c) presents a case with a uniform relax-
As a first example for transonic flows, we study ation parameter, oo = 0.95 for the entire field.

the acceleration of the line SOR solution for a With this u_ , convergence of the I'ne SOR proce-
circular arc airfoil at zero incidence, for Kc=I.8. dure becomes exceedingly slow -- 400 iterations
The problem considereJ has a subsonic free stream or more would be needed to approach tile limit with-
but has an embedded supersonic region with an in- in 10-2 . The power of the cyclic transform method
terior shock boundary. The same solution has been to speed up convergence is most clearly, demonstra-
studied previously by Murman in Ref. 29 and will ted in this case. At three levels of accuracy,

be analyzed again later for shock fitting in _ _. 10-2 , t0-3 and l0 -4 , the accelerated :_olutionThe unaccelerated solution is generated by h using the first-order transform appreaches _he
lir, e SOR program with the smallest mesh being limit in 65, 120 and 230 iterations, respectively.
_ =_o5, 4_=O.O4, using over-relaxation in the Application of the second-order transforn reduces

subsonic region and under-relaxadon in the supersonic the iterations further to 30, 60 and 140 'cf.table
reglcn. Cyclic iteration procedures, using the in Fig. 5(c)).
first-as well as the second-order transforms, are

applied. Each cycle consists of sixteen iterations 5.3 Example with Circulation
(k' =16) , with rrl=_ (of. _ 3.4); the first

cycle commences at k=9 for the first-order pro- Satisfactory convergence of the iterative so_u-

cedure and k = 17 for the second-order procedure, tions to the 2-D transonic problem involyi_gl_ft
The linear average quotient form _., is used for is known to requlre 250-1200 iterations. _ , 7/
estimating "_l, and the inner product form is used
for estimating _and pf (of. §_ 3.1 and 3.4). We shall examine below the convergence characleris-tics of a line S0R solution and its accelerate_
(Linear average forms for estimating _-_have also version for a circular-arc airfoil at incidencL,
been used without major differences.) with K¢ = 2.29 and =/_ = 0.1454, correspondilg

The convergence histories of solutions by the to _/1_= 0.848, a 6% thickness ratio and a½o algle
th,'ee different procedures are illustrated in of attack. The line SOR procedure uses cu = I.)
Fig. 5(a) - 5(c) for K c= 18 at _= -o. oz5 , and 0.8 for the subsonic and supersonic regions,
_'= O , for different combinations of the relaxa- respectively. The cyclic acceleration procedure

tion parameters uJ in the elllptic and hyperbolic employs the first-order transform with m = 2,
regions. In each case, the initial (trial) data k' = 12 iterations/cycle, and ,A., bein 9 estima-
are furnished by a sufficiently accurate solution ted by the inner product form Eq. (3.17). Typical
to the same problem at K¢= 2.). corresponding to convergence histories for the velocity perturba-
a lower free-stream Mach number. The unaccelerated tion on the top and bottom of the airfoil surfaces
line SOR solution is shown as a solid curve; the are shown in Fig. 6(a) for a point near the mid
accelerated solution using the f:rst-order trans- chord, _ = - 0.025 and _ = + O. The unacceler-
form (referred to as ALSOR-I i_ the figures) is ated solution is given as a so!Td curve and the
shown as a thin solid curve drawn through data accelerated solution in open circles. For the lat-

from all iterations ; for the solution accelera- ter only data points at the conclusion of each
ted by the second-order transform (referred to as cycle are shown. The improvement in convergence
ALSOR-2), only data points at the end of the cycles rate through the cyclic method is quite evident,
are shown (in circles_, although not exceedingly great for this particular

Figure 5(a) shows _ vs. the number of itera- point. The usefulness of the method is more clear-
tions k for the case in which uJ = 1.4 in the ly shown in Fig. 6(b), where the convergence his-

elliptic region and uJ= 0.9 in the hyperbolic tory for the circulation _ = E_ T.=. is presen-region. The improvement in the convergence rate
ted. The _cc_lerated so ut on approaches the limitthrough cyclic application of the transforms is within I0" after I_0 iterations, whereas for toe
same accuracy the l_ne SOR without acceleration

obvious. A factor of three to four reduction in _'_1_'6s8_0 iterations. Oscillations in ;_r of th_ or-the number of iterations is possible, dependin_ on de r 10" are _tected.to pe_'sist at s_me g ridpoint
whether the accuracy requirement is set at 10"_ or _nis may De e_minate_ Dy using a sma_er _ or the
10"3 (cf. the table in Fig. 5(a)). We note that second-order transform.

10-2 is comparable to the truncation error of the The rorresponding Cp distribution over the
difference equations; 10"3 Is therefore a reason- airfoil (not shown) indicates exlstence of super-
able margin needed for confirming the convergence critical flow on both sides of the wing, with a
uf the iterative solutions. To approach the limit weak _hock on the top. The result
with the 10"3 accuracy_ the unaccelerated solution is comparable to the Cp determineC from the wind
will require 350 or more iterations, tunnel experiments of Knechtel.(51) As noted by

Figure 5(b) gives the results for a different Krupp and Murman,(16) however, a successful

I0
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Ii : correlation of computer solutions with the experi- region,although descriptions of some of these

imental data fr_n Ref. 55 and other sources has to features could be improved with a very fine local
depend on a departure from Eqs. (5.2) and (5.3) in• . , = , ,_j grid , at least in principle.
computing K. and Cp (using ,nstead, Kc=(a-t't;_/vf_ _-

and C =_-Zt =/* .l_. ) This ambiguity Pp _ , • Whereas the jumps in th_PO solution follow the
(though s|i9ht) can be settled only after adequate shock polar rather closely, _=J/ the solution requi_s
studies are made on the basis of the second-order 3 very fine grid with a mesh size iO-3 of the wing
small-disturbance theory, and a systematic analysis chord, as noted earlier. The agreement appears to
of errors in wind-tunnel experiments. We prefer to be less satisfactory in regions wher_ the shock
examine this question |n a separate work, which is is not nearly normal (cf. points f and g in Fig 6
not r,'evanc to the present study, of Ref. 29). In the followin9, shock fitting will

As a transition to the second part of our study, be adapted to implement the line SOR procedure of
namely, shock fitting, we observe in passing that Murman and Cole; results comparable with Murman's
the shock jumps deduced from the converged solu- con be obtained with much coarser grids.

tions in all preceding examples, as in many sGlu -
tions based on current SOR programs, do not fully 6.2 Basic Procedure
satisfy the Rankine-Hugoniot relation Eq. (5.4).
This discrepancy can be easily detected by compar- The Shock Polar
ing the arithmetical means of the surface speed
with the normal shock value _) = _C/(_+r) The Rankine-Hugoniot relations in the transonic
which is required at the root of the shock. In the small-disturbance theory have been given earlier
last example considered, the shock strength is i. Eq. (5.4), and are repeated here for convenience
found to be 20% too Iow._

'
: -_y-y). (6.2)

6.1 Preliminary Remarks
With _=_ ,_'= _ , the first equation is
identified with the shock polar in the hodograph

Aside from the inadequacy in predicting shock _-_ plane. The second equation signifies the
jumps, the line SOR procedure following the Murman- continuity of the tangential velocity component
Cole scheme may also give an excessively thick across the shock _=_P(_7_. The latter may be
transition zone for an obilque shock. Thi3 can be replaced by the continuity of _" across the shock

illustrated by an appllcation of the procedure to EN]]a linear supersonic wedge flow, for which _nly the =O (6.3)
backward-difference operator needs _ be u_ed and
no iteration is required. Figure 7 presents the which assures the existence of an intersection of
profile of _Z at clfferent _-Ievels computed the _" surfaces belonging to two sides of the
with A_=4_ = 00-r in the region O _ _ 0.o5 shock. The ridge where the two surfaces meet,
O _/.05 above the wedge and behind the shock therefore, locates the shock boundary. However,

discontinuity. While the exact solution gives the slope change at the intersection h_s to satis-

n_ = _'~ _ where _(_) is a step function fy the shock polar Eq. (6.1) ori , ;_e{_;4_t_d solution takes lO grids at
= 0.45 , and 20 grids at r=/.o5 , to cam- _-K c +64+0_ - (d_%_) z (6.4)

plete s_e transition. This model suggests that

solutions for sonic boom and for shock-interaction An essential point to observe is that each
studies by the line SOR methods should, perhaps, oblique Rankine-Hugoniot shock in the physical
be taken with caution in the supersonic range, plane bel_ngs to a point on the shock polar Eq.
although the nonlinear steepening, absent from the (6.l), and that the image of a surface of dis-
model, could pla_e a limit on the shock thickness, continuity in the hodograph pldne, which does not
In any case, the model solution confirms the vali- conserve the tangential momentum, cannot coincide
dity of the cor,_onpractice of defining the shock with the shock polar (except perhaps at their
position by the point of maximum slope for - _ intersections). It follows that a solution with
or Cp , noting that such a point (in circle) is shock boundary which satisfies Eq. (6 i) will also
reasonably close to th_ exact oblique shock Ioca-- conserve tangential velocity and potential i.e.,
tion at each level, in spite of the excessively satisfying Eqs. (6.2) and (6.3)? t This will be sub-
large shock thickness. We observe that the SPO stantiated by the numerical experiment.
(shock-point operato?) of Ref. 29 does not apply

to a shock with a supersonic-supersonlc transition In comparing the computed shock jump with the
(cf. _ 7), therefore the solution using SPO in shock polar, it is convenient to eliminate the
this case may give a relatively large transition
zone compared to that in a supersonlc-subsonic non-uniform upstream ce_dition from Eq. (6.l). This

can be accomplished by letting K;=(Kc.(ytransition, unless a very fine grid is used. Ih¢.

goodagreementofthe so,ut th.agnus ) /
in the bow shock location may be attributed partly L

perhaps to the useful aefinition of the shock "\_/f_(_'+_l_ _ j (6.5)position mentioned. V= _ (_- K_
The lack of a sharp definition for Lhe shock

discontinuity in the line S0R solution may. obli- The shock polar Eq. (6.1) may then be reduced to a
he re ex ans on slnqularlty. (53'54) the single curve(Zg)t.rate t - p ....... ,

sonic-I ine/shock intersection, [zI ,bq) and other _ 7 (2 + uz)U-=z " 3Z v_=O (6.6)fine details of an embedded supersonic flow
Use of finer grids does not prove to be helpful.

ft If _'7_/_J = - d_O/d7 then Eq. (6.6) becomes Z7(Z,5,)u'z=- _= _=Z=o.' 11
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before the next iteration. This step is important
Treatment of Points Around Shock for a consistent treatment of the elliptic and

hyperbolic points. For this purpose, the central

The line-relaxation procedure Lo which the difference form of _'_ is computed for the region
shock fitting method will be applied is basically of interest from stored _" data acquired from the
that of Murman and Cole described in §5. The recent sweep. The sonic point is identified _ith
modifications in the difference equatiom ace founJ

mainly in the treatment of the grid point on each _c _ _c- (_ '_= O. (6.7)
horizontal line nearest to the shock on _he down-

stream side, and the nearest grid point along each This will relocate the boundary "RSHC" of Fig. 9,
vertical on the upstream side, labelled as p, _, and separating the hypersonic and elliptic regions,
Q , respectively, in Fig. 8. Three types of local which includes the portion of the shock ("SR" in
shock inclination must be distinguished in treating Fig. 9) with a subsonic downstream. A criterion
point P , depending on where the shock crosses the is used to distinguish the shock fromthe sonic
vertical through P (cf. Fig. 8): curve (for a shock, the decrease in _ across

the "sonic point" is required to be no less than
(a) a point between P and the nearest grid 5a_).

above P, i.e., a backward inclination;

(b) a point between P and the nearest grid The shock position can be alternatively located
below P, i.e., a forward inclination; by the intersection of the _'-surfaces belonging

to the upstrea:, and downstream side of the shock

i_ (c) a point beyond the nearest grid. (located in the previous interation). This should
! The inclination in (c) can be either forward or also locate the portion of shock('ST_ n Fig.9) which has

backward and includes the locally normal shock, a supersonic downstream, provided numerical vis-
This classification, as well as the introduction cosity will not smear out the gradients of _" near
of points P and Q , are necessary in order to des- the shock. For problems involving embedded super-

i cribe the shock boundary as one with a slope dis- sonic regions in general, and the example to be
continuity for the_"sJrface. _ studied in particular, the shock strength over the

portion "ST" is rather weak and its extent is very

At point P , the difference equation in the narrow . A sub-routine to apply shock-fitting to
original line SOR procedure is replaced by the this uart of the flow region has not been made to
difference form of the shock-polar equation Eq. date.
(6.1). In all cases, the (_ are evaluated from
the central differences at points A and B , and Accuracy and Local Grid Refinement

° _'5 from the differences at O and C , in the
manner shown in (a), (b) and (c) of Fig. 8. The The shock-fitting solution permi_the use of
splitting of the calculation for the _'_- jump a grid coarser than that used in SPO and other
into two parts along different vertical lines is a relaxation procedure for comparable accuracy. This
crucial feature which retains the shock as a sur- is because the several (4 or more) grid points

face of discontinuity. The original difference making up the artificial shock structure can be
equation for the upstream point Q is also in need eliminated. This may mean an order of magnitude,

i_ of implementation in cases (a) and (b) , because or more, saving in the computing time. Even with
one of the five points in the backward hyperbolic sho_k fitt;ng, however, the relatively coarser grid

mu_t still be sufficiently refined near the shock
! operator has been lost to the other side of theshock. The needed datum is supplied by forward for a clearer definition of the shock location
_ (downstream) extrapolation to P from three upstream and an adequate description of the re-expansion

points, singularity. Since the finer grid is require0
L only around the shock,relaxation solution with the
i The Modified Line SOR Procedure finer grid needs to be carried out only in a

smaller (rectangular) domain enclosing the shock,
The foregoing treatment, together with the hyper- with boundary value for _" taken from the solu-

belie, elliptic, and parabolic difference operators tion for the coarser grid. The local grid re-
and other minor implementations applied to other finement in this manner may, therefore, be made
interior points, complete the difference-equation without increasing the dimension of the iteratlve
system, matrix.

If the flow at P ;_ subsonic, data at grids to 7. RELATION TO SHOCK-POINT-OPERATORMETHOD
the left (upstream) of p are known from the most

recent sweep, and those to the right, as well as the In certain subtle aspects, the shock-flttlng
R.H.S. of Eq. (6.1), are taken from the previous method presented in _ 6 and the SPO method of
iteration; Eq. (6.1) then determines _ at p . This Murman(29) are strikingly similar. It must be
results in two (linearized) tridiagonal matrix emphasized again that the SPO method generates its
equations for the lines abov_ and below the shock, solutions by continuous calculation as in the
which may be readily inverted for each sweep, original Murman and Cole procedure (a shock jump

If the shock has a supersonic downstream, both is completed in four or more grid points). As such,
point _ and its downstream point S have to be it is not relevant (and unfair) to assess the SPO
treated (cf. Fig. 8.A). Continuity of _ across right next to the "shock point". The following
the shock as well as interpolation along vertical will delineate these similarities as well as their
line are used for determining _ at _ and the. differences, which are helpful for interpreting
points below. The shock equation (6.1) is applied the results in § 8.
to determine _ at S. If

Relocatin_ the Sho_k and Sonic Boundaries

The sonic and shock boundaries are relocated
Refer Addendum A.3 for more general consideration.

_t Refer Addendum A.4 for more detailed description,
12
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illustration in Fig. I0 (b) that _'_" at D will be
under-e_timated by the SPO in most cases.

7.1 The Shock-Point Operator
Had(_') D been evaluated along the ne"t ver-

The elegant device of Muman in hef.29 is tical to the left of point P, as in (a) or (b)
simply to replace the parabolic operator in the in Fig. 8, (and if the scale ratio could also be
original procedore(a_ a supt.,_onic-subsonic tran- properly chosen) the spa would have beco_e a shock-
sition point)by one in which the original dif- fitting scheme. The splitting in th_ []'_-_
ference operator is changed to the sum of the calculation represents a fundamental difference of
x-differences in an e!liptic and a hyperbolic the shock fitting from the sPa procedure.
operators. Using the lettered subscripts to denote
points show_: in Fig. I0, the equation written for 7.2 spa as an E!liptic Operator Fitted to a Shock

t0=-(_.,)/<=_"* _ is
z z 2 N z In problems with embedded supersoniL flow, the

(_Oi")ll" (_O_')z ('(P_-)I -/_a£); (_07_0- (_~)c (7.1) shocks often appear nearly normal to the free
2 a_" 2d_" a 7 stream with d_°/¢_ ", (_)o,and(_'f)¢ being numerically

where, to be sure, (_o_') I is supposedly the value small. This would suggest chat the R.H.S.'s of
of _p_" in a continuous solution at the intermediate both Eqs. (6.1) and (7.2) could be omitted, andthe two equations would then beceme equival-,nt.
(or imaginar/) point between (th__ two mid points)

A and B (cf. Fig. IG). This value (_.) is of Namely,
course not needed in the computation, in which the _-_(c+ (Y+O _'> =

equation for the shock-point P can be written as -K c I- (_-_,_'((_Z)4"('_'_)II) = O (7.4)

(_).F(_.),C_).I= implying a normal shock. This stipu]atior, is mis-_Kc if_ f+f
lea(Hng, however, because over the part of the

[((_'_')D (_'_'),]{_)8"(_'g')'] °1 (,.2) shock farthe,-from th_ airfoil, although d_'/',_"- " " it" is small (say, I/4 to 1/16), both upstream and
downstream value of -_£f(!ffj)_" may also be small.Formal]y, the shock-point operator Eq. (7.2)

could be identified with the shock polar Eq. (6.1) A more penetrating interpretation, which relates
in difference form, provided that the mesh ratio SP0 to the shock fitting as well as the notion of

_',/,_" can be taken as the shock 3lope d_'°/td_ " , a normal shock, is to consider the SP0 as an ellip-
and that the shock point P lies on the shock. In tic operator at P fitted locally to a mDdel shock.-- This model shock, though ublique and curved, obeys

i s';ch a case, everywhere the normal shuck condition

: o <TS): = II (7,
For a _]ane normal shock, the SP0 will indeed agree This equivalence may be seen as fo]lo_s.
with the shock condition Eq. (6.1), irrespective of
the mesh ratio and the other stipulation because The elliptic difference operator of the small-

the transverse velocity _. vanishes, disturbance equation applied to P is
t

In general, Eq. (6.1)and (7.2) for P do not t Kc- _L('_s),'(,¢',-),J)_c'_';,-(*,)d=
agree. Thus the correct shock transition cannot A_'[(_'r)D I_T)J [7.G)be accomplished in a single jump by the sPa itself; "f" _ --- --
but the correct jump can be completed in a few where the central-dlfference quotients are ust_J
(say four or more) grid points in a relaxation and the letter subscript I" refers to the mid point

; solution utilizing the sPa algorithm, as demonstra- in Fig. 10 (a) but the value (_'_')Z represents
ted by Murman. (29}" Murman is able to show theore- the value 11_'_- continued analytical]y from behind
tically in Ref, 29 that difference equations based the shock (if point .[. happens to lie on the up-
on the hyperbolic and elliptic operators, making stream side). To first-order accuracy in d_" ,
use of Eq. (7.1) or (7.2) at shock points_do re- this value can be computed from Eq. (7.5) as
produce correctly the correct jumps connecting ...

flow upstream and downstream, which are many grid _'_')I.-- 2K,- (,+,)[_._ . (7.7)
points away from the plane oblique shocV, (under the
stipulation that the plane oblique shock passes Substituting Eq. (7.7) into Eq. (7.6) we recover
through two grid points, i.e. #_'_/_" =a_'/'N_l_' , precisely the SP0, Eq. (7.2).
where N is an integer).

Hence, the sPa solutiOn should agree with the
It is apparent that the way in which the shock solution generated by the shock-fittlng pro,lram

is captured by the procedure using sPa will be described in _ 6 , provided the term (d_'m/d_") a
quite similar to that by the Murman and Cole and or E_'_'3 z is completely turned-off from EQ.(6._)
other methods bas_'' on continuous calculations -- or (6.1)_as if for a normal shock. This latter
a few grid points have to be spent to arriv,.t at the version of shock-fltting may be referred to as
correct jump. "nornial-shock-fltting" (NSF) for the lack of a i

better term. This equivalence may explain the
Aside from the fact that it is not easy to success of the spa in greatly reducing the nu_:_-

have 4_"/a_ -. NchT_/d_ " , the other fact which ber of grid points for shock transition,
prevents the SPO from yielding the right jump at
the shock point is that thr difference in _" on As an algorithm, tht, r_ is nevt, rthv),,ss dil-
the R,II.S. nf Eq. (7.2) is computed froTi_ (Iota at: t_,r'_,mt, b(,tween tl_ NSF scht:m_ end the SP0. F_r,
e, p, and f along tho ,.,a:_v v,.rtical line (cf. Fig. in SPO, the shock p*_nt P is an rllipt_c pulnt and
I0 (a) and (I))). It is quite apparent train the the point c(_rrospondinq t(, the, first am, alt,.r th,:

13
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jump is point I. in the NSF, however, the point P to determine the improvement gained . The number

(of.Fig.8) carries the information from the Hugoniot of grid points is kept the same as in our basic
relation Eq. C6.1), and the first elliptic point SOR program (iii) for the larqer 6 _ 6 rectangle,
lies farther downstream from P. In other words, i.e. 81 x 31 points. Iterat,,u solutions for pro-
the elliptic point in the SPO is one grid farther grams (i) - (iii) all converge satisfactorily in
upstream from that in the NSF. The first jumps IOO - 200 iterations (without the help of accplera-
after a "shock" recorded in the SPO and NSF will tion techniques). The additional co_lputer time n_eded

accordingly be different. (This will also de- for shock fitting in the examples considered is
pend on the method with which the gradient of the co_parable to that for the basic program. (The nuz_

potential is deduced_ Since this jump does not ber of grid points used in the correspor,ding SPO
satisfy the conservation law, the NSF solution,like calculation of Ref. 29 is about 3 times larger, but
the SPO solution, will rely on numerical dissipa- with a rectangular domain hdlf the size of ours.
tire terms inherent in the difference equations to The computer work required for a converged solution

; bring about the correct transition (in a few grid may presumably be 6 times longer.)

points). Interestingly, the proof given in Ref. 29 8.2 Study of Results

I for the consistency of the SPO solution with theconservation laws for an oblique shock over a rec- Comparison with Shock Polar
_ tangle (with a base large compared to _R" ) may

be readily extended to the NSF solution. A critical test fo. _he adequacy of the numeri-cal solutions in describing the shock is to compare
_. NUMERICAL STU&'(WITH SHOCK them with the shock polar in the hodograph plane.

i FITTING AND SPO METHODS This is examined in Ca) and (b) of Fig. II for the

SPO and the shock-fitting solutions, respectively,

B.I Comparison of Shock Fittin_ with SPO Solutions generated for the same grid _,_" = 0.0125,
a, _" = 0.0133. The points ( _ ) in Fig. II

In order to bring out clearly the difference Ca) designated by a given symbol correspond to

of the solution using shock fitting from other successive grid points along a given distance from
treatments, we shall compare solutions from computer the airfoil, i. e. a constant _ Oabeled in the box);
programs based on three methods of treating the Eqs. (6.5) are used except that quantitius with the

li "+" superscript are replaced by the local values,

shock :
and the subscript "2" is omitted. The reference

(i) Shock fitting (cf. § 6); value of _ is evaluated at a point upstream

(ii) Shock-point operator (cf. _ 7.1); where the large departure from the smooth solution(iii) Continuous calculation,i.e.,shock-cap- begins. The number labeled with the data provides

luring ( _ 5.1 and 6.2) the relative grid position in the downstream direc-
tion. With one exception, SPO solutions take

The basic computer programs used in (i) and grid points or more to reach the vicinity of the
(ii) are the same as in (iii). Program (ii) is shock polar (note the flagged symbols), as reported
essentially Murman's "Fully Conservative" (FCR) in Ref. 29. However, the agreement varies from
program but will be referred to here simply as the fair to poor, indicating that the SPO, for the a_h
SPO program. We point out that, because of the dif- slzeSused, is not effective in describing the in-
ferences in certain details in their basic SOR pro- clined part of the shock. In Fig. II(b), we corre-
grams, a direct comparison of the shock-fitting late velocity jumps (circles) computed from _
solution from program (i) with flurman's SPO result data stored at the end of the iteration, using se-
of Ref. 29 may not reveal very clearly the changes cond-order accurate formulae. The agreement ,_ith
due to the different treatments of the shock. A the s .ock polar clearly illustrates the adequacy of
program based on the NSF procedure ( _ 7.2) was the mesh sizes employed and the improvement by the

also made in our earlier study. But its difference shock-fitting over the SPO solution (using the same
from the SPO program (ii) is too slight to warrant mesh sizes). Also shown are the hodograph data of
its inclusion in the comparison, the SPO solution of Ref.29 computed with a much

finer grid _' = 0.002; only data closest to the
The _rnblem analyzed in detail is that of the polar curve are taken from Ref. 29 for comparison.

symmetric cl,cular arc airtoil at _c = 1.8 studied

previously in _ 5.2, which features an embedded The data from the shock-fitting solution shown
supersonic region terminated by a shock._ Most re- correspond to the range of 0 < _.2 with subsonic
suits to be presented below are obtained for the flow downstream. Extrapolation of the recorded
grid with _ = 0.0125 and a_ = 0.01333 near the shock data to the point where the downstream is
airfoil which will be seen to be adequate for des- sonic suggests that the sonic boundary intersects
crlbing the rapid pressure variation associated the shock between O.ZO and 0,2Z_ An extrapo-
with the re-expanslon singularity mentioned before, lation of the shock-jump data along with SPO solu-
We note that this grid is considerably coarser tll_ tlo_suggests that the shock strength vanishes be-
the finest uniform 9rid used by Murman in Ref. 29, tween _ = 0.2 and O.25 • The relative posi-
which has A_ = 0.002 , and _" = 0.008 (corre- tions of these two points appear to be consistent
spending to ax = 0.001, and 4y_0,004 ). Thus with the pictureenvlsioned in Fi 9, 9.
the smallest a_ end A_ used here are 6.25 and
1.5 times the corresponding meshes used in Ref. 29. Surface Pressure

The llne SOR program using shock-flttlng is To ;ndlcate the type of improvement _.,hi,.h can
applied to this grid over a small rectangle O4_1, be made over the original line SOR solution in sur-
e• _•o,$q enclosing the shock in a manner des-
cribed in _ 7.1. The solutions generated fro_ face pressure, we compare in Fig. 12 thesolutions generated from the basic program (iii),
the basic line SOR program prnvides the initial with A,x = 0.05 and a,_ = 0.04 (in short dash ),
data (trial solution); in the shock fitting stud_, and from the SPO program (ii), with a,_=0.0125
SP0 solutions have also been used as initial data and A,_ = 0,04 (in solid curve). The shock-fitting

A slightly supersonic case with a bow shock has also been worked out, Cf. A.6 in Addenda.
The Study also demonstratesthe simultaneous appll_ation of acceleration and shock fitting techniques.
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A.
J

solutior': with finer grid will be examined more shock-fitting and SPO solutions.

thorough, I in the subsequent figure. The data pre-
sented are sufficient to indicate that appreciable Murman's SPO sonic/shock boundary, on the other

departure from the original SOR solution is expec- hand,extends farther downstream than the shock-fit-

ted to occur only in ./45 _ _" 40 ?5. Again, we ob- ting result, consistent with the observation made
serve that the pressure jump at thesurface requires earlier in Fig. 13. Murman's SPO shack curve

i J
/_ grid points to complete. WE hdv_ also inC,uu_d appears to run parallel to that from the shock fit-

in this figure some data points inferred fro::_ ting below _" = 0. I ; this agreement in shock slope

curves presented in Ref. 29 for subsequent refer- is consistent with the corresponding agreement
ence. These include Murman's line SOR solution found in the study ;_ith the hodc_qraph shock polar

with _x" = 0.04 (in filled circles), Murman's two (fig. il). The streamwise displacement in Murman's

SPO solutions with a_" = 0.04 and 4_= 0.002 sonic boundary from ours is quite appre=iable, being

(in filled and open trian_31es). Their data in the 3.{. of the wing chord at _ = 0.3. The discrepancy
shock transition zone are not shown. The twO sets between our shock-fitting solution and Murman's
of SPO da_:a from Murrnan correlate very well among SPO solution will be examined more critically in

themselves, buthave a maximum slightly lower than 8.3. The above c_mparlsons in Figs. 11-13 suffice
our SPO solution, to establish that shock fitting provides an im-

provement over the shock-capturing as well as SPO

The corresponding result from a more refined methods in locating the shock and describing flow

calculation byNour SPO program (ii), using smaller details in its vicinity, although little difference
_"- m_sh, _0y= O.O1333_is shown in Fig. 13 as a is found at the airfoi _ surface.
short-dash curve. Its difference from the result

,_ith a coarser grid shown previously is very little. In our shock-fi;.ting procedure, the condition

In fact, subseq,Jent calculation using an even for the continuity of the tanqential velocity com-

smaller x-mes_ ( A,_" = 0.00625, A,_" = O.O1333), ponent has not been explicitly used. A sufficient

shows again very little difference in the surface condition for fulfilling this is that Lne two poten-

pressure except for a sharper definition for the tlal surfaces from upstream and downstream intersect
shock, at the shock boundary. A point-by-point examination

i has been made alonq the shock. In no case have we
i

The shock fitting solution with _,x" = 0.O125, found the potential-surface intersection to occur

•_,_" = 0.01333 is shown as a full curve which is beyond the same grid pair bracketinq lhe v,.,loclty
quite close to the SPO curve (in short dash). Hence discontinuity defining the 5hock. Fig 15 de'non-
t.he SPO and shock fitting give essentially the same strafes such a consistency for the level "_ = 0.O891.

surface speed, although the SPO with the same grid

fails to giw an accurate shock jump at points 8.3 Accuracy and F_,ither Grid Refine,1_ent
removed from the airfoil surface, as shown pre-

viously in Fig. II. The discrepancies with Mur_:_ar1's very refined
solution(29) brought uut above suggest readily

We note, however, that the SPO result of that a higher accuracy may be needed for shock fit-

Hurman (included as a long-dash curve) is located ting than anticipated. This sugq_stion gains spe-
farther downstream than our solution (I chord) cial significance in view of the rc-_.×pansion singu- <"

with a correspondingly larger shock strength (2') larity noted earlier.153,54) The shack-fittinq solu- i
•

and a lower ._aximum for the surface speed (17) tion is therefore repeated .t:ith a finer _rid, uslnq
A,_ = 0.00625, A,_" = 0.O1333. This is about 3 j

Sonic/Shock Boundary times the x'-,nesh and l.Stime_ th_ _-- _,lesh used in
Ref. 29. Since the field away fro_ the shock is

Figure 14 presents the sonic/shock boundary affected little by shock f ittin_l,rect,_ngular bound-
from the SPO solution (in short dash) and from the ary enclosing the main part of a shock smaller

shock fitting solution (in full curve), for the than the previous solution is used, with.¢,¢ _'< .o) , .i

same grid with _,_ = 0.0125 and _I,_" = 0.01333. O • _" _..Sg. In this way, the total number of
Th_s sonic/shock boundary is inferred from the. unknowns in the difference equations remains the i

local sonic condition. The part of the shock same as before. This result of the ,]rid-halving

boundary for the SPO solution has a spread over q- turns out to give negligible chanqe Noticeable

5 cjrid points (not shown). The shock-fitting rc.sult but very small differences can be found ;n the shock

appears to follow the short-dash curve of the SPO strength and the surface speed near the shock (refer

solution, wilh a slight but interesting deviation to fine dots in Fig, 13)_and in the shock location

between _" = O. I and _" = 0.225, the last point is near the new vertical boundary _" = O._. The later
near point _ inferred previously to be the inter- deviation could very well result l'rom the _nade-

sectio,_ of the sonic locus and the shock. There quate description of the supersonic-supersonic

appears to be a slight indentation, along with shock transition in the present proqrams,which may

changes in the curvature sign, at _" : 0.2 - cause difficulty at the boundary .vhi_h ,.,as set too

0.25, suggesting an intersection involving ._ _,_lall close to the shuck. The de,free of invariance uf

angle between the shock anu sonic boundaries , ._ . the solution wilh respe_'t I,_ _;rid relim.ment shown
in the solutions (onfir:_e_; the a_curacy of ,_ur

Included in Fig. 14 for co_.parison arc, the shock fitting solution.

sonic/shock boundaries based on the basic SOR pro-

gram {iii) using a_ = 0.05 and _i_= O.04, (in Two more scurce'._ of (.r_(_r may a_(ounl for the
dash-dot _.urve) and the result inferred Ir_r_, the discrepancies, O_e m,_y aris_, f_,_ _.he l_r-I ield

SPO solution given by Hurman (29) us,n( an x-.:_.sh descripti_n _sed ill tile pro_ed_,l_, _ d_ub;et of

equivalent to a_= 0.002 (ill dash). Th,. Idash- an unkn_wn str_.n!llh has been _,s_'d in b,_th :._ethods.

dot) boundary given by the cu(lular sht,_sk-capturiml Ncw,rtht, less,th,' I'_.,,.._nably qo,,I aqr_._.] nt with

method, believed t_ be affected !;ttlt, [),_ _urth,.r s_luti_n _, Iro_ l)i_,l_'a,,s _i _ an_l ,_,) i:_ re_iions

qrld refine_nent, is s(_newhat s_1,aller than _,ur re:,,ov,,d fro'_ the' _h_ck (.of. li i'_ 12 rind 13) qives
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ample evidence that Murman_s SPO solution and our problems. This approach also has the potentiality
shock-fitting solution agree in the far field, for speeding up certain pseudo-unsteady finite-

difference methods.
The remaining source of the d;screpancies may be

traced to the convergence property of the iteration For treatments of shock disconti.,uity, we have
procedures. For the shock-fittinq solution,one hun- developed a shock fitting scheme to implement the
dred twenty iterations has been used to approach the line SOR solution to the transonic small-distu_an_
convergence limit with changes in _'_ less than theory. The scheme differs from existing works on
IO'3 per 20 iterations._ _ sh_,ck fittings,which deal with unsteady problems

without making use of a veluclty potential. The re-
lative simplicity of the algorithm is comparable
to the shock-point operator (SPO) of Murman. The

9. CONCLUSIONS study shows that the SPO is consistentrto the first
order of _ _with an elliptic operator, using a

! In this paper, we have studied techniques of derivative boundary condition (at the left) provi-
accelerating the relaxation methods and treating ded by the Hugoniot condition for a normal shock.
a shock discontinuity in the context of the tran- In this sense, the SP0 can be interpreted as a
sonic small-disturba_.ce theory, mode1 case of shock fitting, ,.,hich perhaps explains

the improvement of the SPO over the original shock-
Essential in the acceleration technique is a capturing method (in terms of the number of grid

i transformation applied cyclically to the iterative points required to complete a shock jump). :i
_ solutions. The transformation generates a new set

of data closer to the convergence limit for itera- Numerical experiments with the shock fitting and i
tions in the next cycle. The key formula has much the SPO have been made for a supercritical flow
in common with the "ek" (or "em") transform of past a circular-arc airfoil at transonic parameter
Shanks,(30) also Aitken's _ -process,(31"33) but Kc=l.8 and -I.83. The improvement by the sho_k
derives its theoretical basis from the power fitting over SPO (for the same grid), in satisfying
method.(3,9) the Hugoniot condition and in defining the shock

position, is demonstrated. For solutions with com-

_. Cyclic techniques using the first-and the second- parable accuracy, the shock fitting should provide
order transforms have been tested in a model an order-of-magnitude saving in computing time.

Dirichlet problem and the transonic airfoil problem. Result for Kc=-1.83 of shock fitting agrees wellThe results have demonstrated the effectiveness of with the bow-shock solution of Magnus and Yoshihara

! the technique in speeding up the convergence of the (27). The study of acceleration in this case has
" line relaxation solutions for the elliptic as well also demonstrated that acceleration and shock fit-

as quasi-linear,mixed-type problems,with different tingcan be applied simultaneeuSly with expected
choices of the relaxation parameters and sweep di- gains in efficiency and accuracy.
factions. In most cases studied, reduction in the
total iteration number by a factor of two to four ACKNOWLEDGMENTS
can be achieved,dependlng on the accuracy require-
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I and break down however, as the
Wi lkinson, (_)whlch

moduli of the dominant elgenvalues of the iterative Acknowledgment is due to Garry Tee, Ahmed Namoury

I and Sen-yih Meng for their assistance in the study,
matrix approach unity. The present study has contri-

buted to a more critical error analysis for the and to Elizabeth Harris and Gali Wamsley in the
transforms, which allows for a set of closely-spaced typing and production of the report.
eigenvalue moduli to approach unity. Implicit in
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stipulation is not met (e.g,,if_>_win the model
O_richlet problem). This remains a weaknessofthem_ ADDENDA
thod,but may be remedied by readjusting the relaxa-
tion parameter,or introducing reverse sweep,in the A.i Relations to Geometric Series and Remarks on

basic line SOR program. _.Anti-Limit(P' _3

Applications of the cyclic method have been limi- More generally, the @_I_} yields the exact
ted to accelerating the lineSOR solutions of Mur_an limit, if _ can be represented by the k-term
and Cole for a circular-arc airfoil at small inci- partial sums of n geometric series.
dence. The results suggest that similar improvement

in convergence properties may be expected for more In this work we have not explored the potentiali W
complicated 2-D and 3-O elliptic or mixed-type of Shanks' transformation to convert a divergent
"_. Addendum A.5 for further comment on differences from Murman's (Ref. 29) results,
_tntCf. Addendum A.6 for the study of the slightly supe#sonic (K{¢O) case and of acceleration of line SOR

with shock fitting. _6
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procedure to a conver3ent one, corresponding to smaller shock angles. Suppose that the slope of the
Shanks' notion of an "anti-limit " This Fact may be supersonic-supersonic shock d_a/d_ ' turns out to be

quite useful; for example, if /A,] _1 but 1_,.14 I , large enough (relative to aR/A_" ) so that point
i = 2, 3, ..., N, Eq. (3.6a) still holds. "P" occurs directly above the point "S" which belongs

to the next lower horizontal, such as the "P'" in
A.2 Acceleratin_ Line SOR Based on a 9-Point sketch (b) of Fig. 8.A. In this case, _" at P' can

D;ffe'rence Scheme (p. 7) be determined directly by interpolation between the
shock and the point S below. With a still larger

Numerical experiments with our acceleration tech- shock angle, there may be two or more grid points
nique have been made on line SORmethod using a 9- between the shock and S along the vertical in sketch
point difference scheme cT_f_. Fig. 4.A). In this (b) of Fig. 8.A. In this case, more extrapolation
case, O. Young_s(2) theorem for optimum relaxation work a!ong the vertical for _ (and _'_" ) will be
parameter does not hold, although Garabedian has needed. Clearly, the determination of the type of

estimated the opt;mum glJ for point-lterative pro-_ shock inclination depends on the relative magnitudes
cedures by studying an associated hyperbolic PDE(5 }. of d_/O_ and _/A_'.
The optimum-relaxation parameter is not known for
the line SOR procedure considered here. In Fig. 4.A If the flow field analysed is thorou9hly super-
a typical convergence history of the unaccelerated sonic downstream of a certain _'=x'_ , for all y" ,

results, using Ax = 1/30, is shown as a solid a one-sweep procedure _ forward in _ can be
curve. The accelerated result based on a second- used. In this case, the algorithm to treat a super-
order transform is shown in short dash with circle, sonic-supersonic transition remains basically the
which approaches the limit within one percent in 30 same as in the )ine SOR procedure described in the
iterations, as compared to 3 or 4 hundred for the last paragraph, except that it takes only a single
unacceieratcd one. sweep, and that the shock inclination has to be de-

termined from Eq. (6.2) for the next vertical line
A.3 Types of Shock Incl!nations Involving Subsonic after completing the computation for each line; an

! Downstream (p. 12) inner (iterative) loop is, however, needed in app!y-
i ing Eq. (6.1) as a cubic equation for _ , i.e.,

More generally, one must allow for possible situ- for _" at point S.
ations wherein a shock intersects the vertical at

i an x-station f,rther downstream than that through P A.5 Further Comments on Differences from Murman's

;:i: (Of. Fig. 8). The limitation to the three types of SPO Solution for _¢_= 1.8 (p. lb)
inclinations shown in Fig. 8 does not seriously
affect the examples computed in our study, including The small difference from Murman's SP0 solution

the case with a slightly supersonic free stream, for Kc = 1.8 (Ref. 29) noted above (1'_ chord in
When the situations mentioned do occur, the grid shock location, 2% in shock strength, and 3% chord
point for the elliptic operator above (or below) in the sonic-boundary displacement) is believed to
point S would be lost (Co the other side of the resu]t from a smaller rectangular domain (in grid
shock); but the missing _' data can be furnished by refinement) used in Ref. 29.
involklng continuity of _" across the shock and in-
terpolation (or extrapolat:on) along the vertical

through point. S. A.6 Shock Fitting in a Sli_htly Supersonic (K_40)
Case:Acce]eratlon of Line SOR with Shock Fitting

A.4 Shock Fittin_ in the Case of a Su__e.rsonic- _ 14, Ib'_
_upersonic Transition (p. 12)

In as much as the limited difference between the

If the shock has a supersonic downstream, both present solution and Murmanas SPO result of Ref. 29
: point P and its downstream point S have to be cannot be completely resolved with certainty, we

treated. The following will discuss the treatment should compare our result with the corresponding
in a lir, u SOR procedure. When the flow r_gion ana- solution by the time-dependent method of Magnus and
lysed is completely downstream of the "limiting Yoshihara,[27) which is available, however, only for
characteristics," the problem may be treated either the case of a circular-arc airfoil in a slight sup-
by the character:stic method or by a difference pro- ersonic free stream ( Kc = -1.829).
cedur_, using the vertical line sweeping the field
only once. For this purpose, a line OSR procedure with shock

fi_tln9 is applied to the case just mentioned, using
Consider first the treatment in a line-relaxation a uniform grid _ = 0.05 and _ = 0.I0. Shock

procedure. If points directly below _e regular fitting for the bow shock in this case is relatively
points where the hyperbolic operator is applicable, simple !n that_=O everywhere upstream of the
such as in sketch (a) of Fig. 8.A, _" at P al_d the shock, which also eliminates the need for a far-
unknown _ 's at hyperbolic points below p can be field description. With _'=O everywhere as an in-
determined in each iteration in terms of the _ value put (trial solution), the bow shock of Magnus and
at the intersection of shock and the vertical through Yoshihara(27) is recovered (to II, accuracy) in 240
P, u3ing interpolation and involking continuity of iterations. The results for the bow shock and the
_" across _he shock, lhe first shock equation, Eq. sonic boundary are shown in Fig. 16. The subsonic

(6.1), will then be used to determine I_ at point S. flow region in this case is unaffected by the pro-
The algebraic system for the hyperbolic points di- sence of the port_on of shock beyond the sonic down-
rectly below point S may then be solved. If the stream point. The shock/sonlc boundary can there-
shock in sketch (a) were to intersect the next horl- fore be determined from shock fitting which treats
zontal line between P' and S', the treatment of strictly a supersonic-subsonic transition. A singlu-
point P or P' should then be applied to point S_, s_eep prncedure treating supersonic-supersonic transl-
The missing information at P' (which is now upstream lion (of. Addendum A.4) has also been used toconttnue
of the shock) in this case will be supplied by the the solutionbeyond the sunlc boundcry, yielding re-
continuity of _' at the sh(_ckvia extrapolation, suits in agreement with those of Ref. 27. Since the
Si,,ifar treat;_entcan be appl led to shocks with bow shock captured by Murmanls SPO solution (Ref.29)

compared also quite well with Magnus and Yoshihara's
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(27) one sees that the sPa and shock fittln9 meth- 18. Newman, P.A. and Klunker, E.B., "Computation of 1
ads do agree in this case. But the shock-fitting Transonic Flow about F;nite Liftin_ Wings",
method yields far superior resolution in shock Ioca- AIAA Jour., vol. I0, No. 7, 1972, pp. 97i-973.
tlon and in the pressure signature, and is therefore 19. Garabedian, P.R. and Kern, D.G., "Numerical De-
much suited for sonic-boom and caustic studies, sign of Transonic Airfoils", in Nume,'ical Solu-

Lion of Partial Ditferentlal Equations - II,
One obvious questions remains. Namely, can the Academic Press, 1971.

line SOR procedure with shock fitting be accelerated? 20. Yoshihara, Y., "A Survey of Computational
The answer is an affirmative one. We have applied Methods for 20 and 3D Transonic Flows with
a second-order cyclic acceleration technique to the Shocks", GDCA-ERR-1726, Dec. 1972, Convair Aero-
above mentioned procedure, and succeeded in recover- space Div., General Dynamics, San Diego,
ing the bow shock of Fig. I& (to within I'_) in 64 California.
iterations. 2l. Nieuwland. G.Y. and Spee, B.M., "Trensonic Air-

foils: Recent Developments in Theory, Experiment
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Fig. 7 Illustration of shock transition profiles Fig. 9 Ilustration of shock/sonic boundary
in a linear supersonic flow, using hyperbolic delimiting the embedded supersonic region.
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Fig. 16 Comparison of shock-fitting and
_i pseudo-unsteady methods for the shock/

sonic boundary over a circular-arc air-

foil at Kc =-1.829, w;til uniform mesh
_ = O.05, a_ = 0.10. Note that the ac-
celerated shock fitting yields results
indistinguishable from the unaccelerated

one in 64 iterations.
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